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Using Stokesian dynamics simulations, we examine the flow of a monodisperse,
neutrally buoyant, homogeneous suspension of non-Brownian solid spheres in simple
shear, starting from a large number of independent hard-sphere distributions and
ensemble averaging the results. We construct a novel method for computing the
gradient diffusivity via simulations on a homogeneous suspension and, although our
results are only approximate due to the small number of particles used in the
simulations, we present here the first values of this important parameter, both along
and normal to the plane of shear, to be obtained directly either experimentally or
numerically. We show furthermore that, although the system of equations describing
the particle motions is deterministic, the particle displacements in the two directions
normal to the bulk flow have Gaussian distributions with zero mean and a variance
which eventually grows linearly in time thereby establishing that the system of particles
is diffusive. For particle concentrations up to 45%, we compute the corresponding
tracer diffusivities both from the slope of the mean-square particle displacement and
by integrating the corresponding velocity autocorrelations and find good agreement
between the two sets of results.

1. Introduction
It is generally accepted now that shear-induced particle diffusion in a shear flow,

under conditions of vanishingly small Reynolds numbers, plays a key role in the dy-
namic behaviour of concentrated suspensions of non-Brownian particles (see Acrivos
1995). This phenomenon has been studied extensively, both experimentally as well
as computationally (Breedveld et al. 1998; Bossis & Brady 1987), and several mod-
els have been proposed and then tested experimentally for determining the particle
concentration profiles and flow characteristic of such suspensions under a variety
of conditions (Leighton & Acrivos 1987b; Phillips et al. 1992; Nott & Brady 1994).
Here we consider a monodisperse suspension of neutrally buoyant spheres in a sim-
ple shear flow and, by means of computer simulations, focus on the three basics
aspects of this rapidly evolving field: (i) the statistics of the particle displacements;
(ii) the evaluation of the particle tracer diffusivity via both the evolution with time
of the mean-square particle displacement as well as from the integral of the velocity
autocorrelation function; (iii) the determination of the gradient diffusivity from the
particle trajectories in a homogeneous suspension.

The aim of the first part of the paper is to consider further the question, which has
been raised in the past by several investigators in this field, as to whether diffusion

† Present address: RiskMap SpA, via Gian Battista Vico 4, Milan, Italy.



102 M. Marchioro and A. Acrivos

can possibly arise from a deterministic time evolution of the configuration of the
system of particles in a space-filling suspension undergoing shear. To resolve this
issue, we shall present the results of numerical simulations which show that, under
a variety of conditions, a tracer particle diffuses in a homogeneous suspension being
sheared even under the action of exclusively deterministic forces. In this context, a
system is said to be diffusive if any of its coordinates has a displacement which, at
least for large times, has a Gaussian distribution with zero mean, and a variance
that grows linearly with time. We shall also show that our simulations give rise to a
macroscopic irreversibility even though the system being modelled is reversible on a
microscale.

The second part of the paper concerns the particle tracer diffusivity. Traditionally,
see Bossis & Brady (1987), this coefficient has been obtained starting from a single
hard-sphere particle configuration and then computing particle displacements over
time intervals which, even for a monolayer, were typically at least two orders of
magnitude larger than 1/γ, the characteristic time of the applied shear rate γ. Here,
guided by the recent experiments of Breedveld et al. (1998) who evaluated the tracer
diffusivity using a large amount of independent displacement data taken over time
intervals 1/γ or even lower, we performed simulations starting from a large number
of independent hard-sphere particle configurations and, after shearing the suspension
for times 5/γ to 10/γ, depending on the particle concentration, in order to achieve
the equilibrium particle configurations pertaining to a homogeneous suspension in
a simple shear, computed the diffusivity along and normal to the plane of shear
from the ensemble average of the square displacement of the particles, as well as,
apparently for the first time from numerical simulations, from the integral of the
corresponding velocity autocorrelation function. Close agreement was found between
the values of the tracer diffusivity using the two methods just mentioned.

In the third part of this paper we present the first computed values of the gradient
diffusivities, again along and normal to the plane of shear, which were obtained
by applying a technique recently developed by Marchioro, Tanksley & Prosperetti
(2000, 2001), for the purpose of constraining closure relations in suspensions. The
great advantage of this technique is that all the computations are performed on a
homogeneous suspension. The values for the gradient diffusivity thus computed are in
good agreement with the small amount of available experimental data, considering
the small number of spheres used in our simulations.

2. Simulation method
The calculation of the diffusion coefficients is based on the numerical simulation

of a suspension of spheres in a simple shear flow under Stokes flow conditions,
and in the absence of Brownian and buoyancy effects. Although, in principle, any
simulation method would do, we have chosen to use the well-known method of
Stokesian dynamics of Brady & Bossis (1988) which has been developed specifically
for computing the hydrodynamic interactions among an infinite suspension of particles
at zero Reynolds numbers.

As already shown by Brady & Bossis (1985), in concentrated suspensions, adjacent
spheres interacting purely through hydrodynamic forces spend a great deal of time
almost in contact with one another with the corresponding separation distances being
less than 10−8 sphere radii. Also Dratler & Schowalter (1996) (see also Melrose &
Ball 1995) found that, if the non-overlapping condition was strictly enforced, this
minimum separation distance depended on the time step of integration, in the sense
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that adjacent spheres came closer and closer together as this time step was decreased.
All the authors referred to above also concluded, however, that such simulations could
still be performed provided a small repulsive force was introduced between adjacent
pairs of particles in very close proximity to each other. The simulation results were
then found to be independent of the detailed expression of this force provided it
was sufficiently short ranged. The introduction of such a force actually models, at
least qualitatively, the behaviour of real physical systems in that, in the gaps between
the particles, the presence of residual Brownian forces and/or the roughness of the
spheres always play a central role.

For this inter-particle force we used the expression for the repulsive force between
two spheres, already well-tested in Stokesian dynamics simulations (Brady & Bossis
1985),

F αβ = F0

λe−λε

1− e−λε
eαβ , (2.1)

where 6πµa2γF αβ , with µ being the viscosity of the suspending liquid and a the sphere
radius, is the force exerted on sphere α by sphere β, F0 is a dimensionless coefficient
reflecting the magnitude of this force, λ is related to the range of the force, ε is the
distance of closest approach between the surfaces of the two spheres divided by a, and
eαβ is the unit vector connecting their centres pointing from β to α. In the simulations
reported here, λF0 was chosen to be unity and λ = 1000. Simulations using other
values for these parameters, namely λ = 104, 105, 106 and F0 = 1, 10−1, 10−2, gave
similar results.

The detailed description of the simulation method can be found elsewhere, see e.g.
Brady & Bossis (1988), hence we provide here only a brief overview. We consider
the zero Reynolds number flow of a suspension of hard spheres in simple shear
characterized by a shear rate γ. The spheres are placed in a periodic box, typically
a cube with dimensions uniquely determined by the number of spheres N and the
volume fraction φ, and periodic boundary conditions are applied. The volume of
the box V , the number of spheres N and the volume fractions φ are related by the
expression

φ =
4πN a3

3V
. (2.2)

Let x, y, and z be, respectively, the directions of the imposed shear flow, the velocity
gradient, and the vorticity, and let v and w be the components of the particle velocity
in the y- and z-directions, respectively. If xN denotes the 3N-dimensional vector of
the position of the particles, the evolution of the particle trajectory can be represented
by

δxN = δxa + δxH + δxF , (2.3)

where δxa is the affine displacement in the x-direction due to the imposed shear, δxH is
the displacement due to pure hydrodynamic interactions, and δxF is the displacement
due to the inter-particle force defined in (2.1). A large number Nc, typically a few
hundred, of simulations were performed starting from different initial hard-sphere
configurations.

The computational cost of calculating both the many-body far-field interactions
and the pairwise-additive lubrication forces between the particles is O(N3) for a single
configuration, where N is the number of spheres in the unit cell. In our case, this
limited the number of particles in the unit cell to be not greater than 64.

In what follows, all the variables have been rendered dimensionless using the radius
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of the spheres a as the characteristic length scale and γ−1, the inverse of the imposed
strain rate, as the characteristic time. As a consequence the diffusivities are scaled by
a2γ.

3. Statistics of the particle displacement
There exists experimental evidence that, even at vanishingly small Reynolds num-

bers and seemingly negligible Brownian force effects, particles in a concentrated
suspension exhibit diffusive behaviour (Leighton & Acrivos 1987a). More recently, it
was also shown by Breedveld et al. (1998) that, in a sheared suspension at effectively
infinite Péclet numbers, the displacements of tagged particles have an approximately
Gaussian distribution even when evaluated for small time intervals.

In a physical experiment, however, particles are not perfectly spherical and a resid-
ual Brownian motion as well as minute inertia effects are always present within the
suspension, hence it appears reasonable to suppose that non-deterministic irreversible
forces cannot be completely eliminated under even the most idealized experimental
conditions. The advantage of numerical simulations, on the other hand, is that it is
possible to control more precisely all the parameters that affect the flow and, at least
in principle, eliminate completely all non-deterministic and irreversible forces.

The first goal of the present paper is to show, from Stokesian dynamics simulations,
that particle diffusion in a sheared suspension can take place even under the action of
exclusively deterministic forces. This should not come as a surprise given that, as is well
known, even low-dimensional deterministic dynamical systems can exhibit diffusion
(see Schuster 1989, p. 32) which is usually taken as a sign of chaotic behaviour.
Although we have not been able to prove that the system of equations describing
the evolution of the particle positions is chaotic, we suggest that this is a reasonable
hypothesis and indeed the cause of the phenomenon of shear-induced diffusion. To
this end we shall first examine the statistical properties of the displacement of a test
particle in a sheared suspension.

Consider then N spherical particles in the unit box flowing under shear. Denoting
by y(τ) the y-coordinate of a generic particle at time τ, we focus on the statistics of

∆y = y(τ+ t)− y(τ), (3.1)

where τ is taken to be large enough to ensure that there is no dependence on the
initial hard-spheres particle distribution (in our simulations τ ' 5 is sufficient). The
determination of the statistical properties of ∆y, i.e. its p.d.f., requires a large number
of samples.

Since the Stokesian dynamics code did not allow us to simulate systems with more
than about 100 particles, we relied on data for ∆y as obtained from a large number
Nc of different simulations starting with Nc independent hard-sphere configurations.
In this way the number of samples available for the determination of the statistics of
∆y was enlarged to N×Nc (since the computational cost is O(N3Nc), it is convenient
to choose N small and Nc large). Alternatively, a large number of different ∆y could
have been taken from different time slices of a single configuration running for a long
time. We checked that both approaches give the same p.d.f.

Figure 1 shows the p.d.f. of (a) ∆y and (b) ∆z as obtained with N = 16 and Nc = 512
at a volume fraction φ = 0.25, for different t and for τ = 5, together with the plot of
the Gaussian distributions with the same variance as the numerical data. It is evident
to the eye that the distributions of both ∆y and ∆z are approximately Gaussian and,
indeed, the calculations of higher moments confirm that the Gaussian distribution
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Figure 1. The probability density function (p.d.f.) of (a) ∆y and (b) ∆z, thin solid line, for τ = 5,
N = 16, Nc = 512, and φ = 0.25; (i) t = 0.5, (ii) t = 1, (iii) t = 2, and (iv) t = 8. The dashed lines
are the density functions for a Gaussian distribution with zero mean and the same variance as the
numerical data.

is approached for increasing t. A similar distribution for the displacements of the
particle positions was observed experimentally by Breedveld et al. (1998).

The fact that the displacements have a Gaussian distribution suggests that some
randomness entered the system, but does not mean as yet that the particles actually
diffuse. To prove diffusion, it is necessary to show that the variance of the particle
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Figure 2. Plot of ξ(t, τ), as defined in (3.2), for τ = 0, N = 27, φ = 0.35. The two straight lines are
linear least-squares fits in region A (thick solid line) and region B (dashed line).

displacements grows linearly in time. To this end let us define

ξ(t, τ) =
1

2N

N∑
α=1

[yα(τ+ t)− yα(τ)]2 , τ > 0, (3.2)

where yα(t + τ) is the y-coordinate of particle α at time t + τ starting from a single
initial hard-sphere distribution. If diffusion is indeed present in such a system, then
ξ should eventually grow linearly with t with the diffusion coefficient being equal to
the slope of this curve. Figure 2 shows a plot of ξ(t, 0) for N = 27, φ = 0.35, up
to t = 1600. It seems reasonable, but certainly questionable, to conclude that ξ(t, 0)
grows linearly in time. A more compelling proof of the existence of diffusion will be
given later on in § 4.3.

Assuming, for the time being, that ξ(t, 0) is linear in t, we face the problem of
determining its exact slope. This difficulty is illustrated in figure 2 which shows linear
least-square fits evaluated in two different regions of the time domain. The resulting
slopes are quite different, and the exact value of the diffusion coefficient seems to
depend on the interval chosen to interpolate a linear fit.

This ambiguity is due to the statistical nature of ∆y and, in statistical methods,
is generally encountered in evaluating the variance of certain random variables.
Specifically, suppose that ψ1 . . . ψn are n independent Gaussian random variables with
zero mean and unknown variance σ2. The latter can be estimated by the random
variable Sn, defined as

Sn =
1

n

n∑
i=1

ψ2
i . (3.3)

Since 〈Sn〉 = σ2 and, from the law of large numbers, limn→∞ Sn = σ2, Sn is a good
estimate for the variance of ψi. However, Sn is not equal to σ2 for finite n and the
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error of this estimate, i.e. the r.m.s. of Sn, can be shown to be (Folland 1984, p. 293)

Var(Sn) = 〈(Sn − 〈Sn〉)2〉 = 2
σ4

n
. (3.4)

In the case under consideration, we identify the ψi with ∆y even though, strictly
speaking, the particle displacements for a single configuration are generally not
independent, and note that the variance σ2 of the p.d.f. of ∆y grows with t. Therefore,
in order to minimize the relative error in evaluating σ2 which, in view of (3.4) is
O(1/

√
n), one should strive to have a large number of degrees of freedom n. But,

since a single initial configuration gives, at most, n = N, we can increase n using a
large number Nc of initial configurations so that n = N × Nc. In that case we have,
in lieu of (3.2),

〈ξ(t, τ)〉 =
1

Nc

Nc∑
i=1

1

N

N∑
α=1

[
yαi (τ+ t)− yαi (τ)

]2
, τ > 0 , (3.5)

where yαi (τ + t) is the y-coordinate of particle α at time τ + t taken from the initial
configuration i. Again, an alternative approach would be to take the different config-
urations by dividing one single long run into non-overlapping intervals. This method
was tried in a few cases and gave results equivalent to those using the method of
ensemble averaging.

Although all our computations were performed in the presence of the inter-particle
force given by (2.1), there exists the fundamental issue of whether diffusion would
still occur if this force were absent. Recall that, under the action of exclusively
hydrodynamic effects, the particle configuration in the sheared suspension would
evolve according to the system of the Stokes equations which are reversible as well as
deterministic. The latter implies, of course, that, given the initial particle configuration
at time τ, it should be possible, at least in principle, to determine exactly the positions
of all the particles at time τ+ T . On the other hand, reversibility implies that, upon
reversing the direction of shear at time τ + T one should be able to return these
same particles to their initial positions at time τ+ 2T giving ξ(2T , τ) = 0, where ξ is
defined by (3.2). Since such a result is incompatible with diffusion, one is left with the
task of explaining how a macroscopic irreversibility, such as diffusion, could possibly
arise in a system which is reversible on a microscale.

An analogous paradox has been known for a long time in classical statistical
mechanics where the movement of a large number of molecules whose equations
of motions are reversible give rise to irreversible phenomena that are described by
irreversible macroscopic equations such as the Boltzmann equation (see Kreuzer 1981,
for an extensive review).

In our case, the result ξ(2T , τ) = 0 referred to above presupposes that the positions
of the particles at time τ + T , i.e. at the instant where the direction of the shear
is reversed, are known with infinite precision. But, if for some reason, this piece of
information is slightly imprecise, then the initial positions of the particles cannot be
recovered. In an experiment this loss of information arises from unavoidable small
irreversible effects, i.e. surface roughness, Brownian and inertial forces etc., which can
never be eliminated, while, in computer simulations, it enters through round-off errors
and imperfect computations.

As an illustration, consider the evolution of 〈ξ(t, τ)〉, shown in figure 3, for φ =
0.35 and with F0 = 10, τ = 4, and λ = 103, 104, 105, where 〈ξ(t, τ)〉 is given by (3.5)
with Nc = 512 initial hard-sphere configurations. (We have chosen to illustrate the
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Figure 3. Plot of 〈ξ(t, τ)〉 for φ = 0.35 and for τ = 4, F0 = 10, Nc = 512, λ = 103 (solid line), 104

(dashed line), 105 (dot-dashed line). At time t = T = 6 the direction of the shear is reversed.

evolution of 〈ξ(t, τ)〉 rather than that of ξ(t, τ) since the latter is both irregular and
highly dependent on the particular initial hard-sphere configuration; hence the issue
of reversibility cannot be probed as clearly with ξ(t, τ) as it can by examining the
response of 〈ξ(t, τ)〉 to flow reversal.) It is seen that if the direction of shear is
reversed at time τ+ T = 10, the computed values of 〈ξ(t, τ)〉 tend to be symmetric
about t = T = 6 for a short time beyond this point but eventually resume growing
with increasing t. The fact that the time t + 4 = 13 at which 〈ξ(t, τ)〉 attains a
local minimum beyond t+ 4 = 10, was only slightly affected by choosing three very
different values for the strength of the inter-particle force suggests that any small
departure from reversibility will amplify at least exponentially. According to our
simulations therefore, upon reversal of the direction of shear, the suspension loses
its memory after a time interval of the order of one strain, and that, thereafter, the
evolution of the particle configuration proceeds as if the flow reversal had never taken
place. This loss of memory after a finite strain is consistent with the results of the
flow reversal experiments described by Gadala-Maria & Acrivos (1980).

4. Autocorrelation time and the self-diffusion coefficients
In the previous section we showed that the p.d.f. of the particle displacements in

the two transverse directions is Gaussian but that, irrespective of the length of the
simulation, it is not possible to determine, from equation (3.2) starting from a single
hard-sphere distribution, an unambiguous linear relationship between their average
square displacements and the time t. We also deduced from equation (3.4) that, with
simulations using a small number of particles, it is necessary to employ data from
different configurations in order to determine the diffusion coefficients with reasonable
accuracy. This approach was suggested first by Breedveld et al. (1998) who determined
experimentally the diffusion coefficients from the p.d.f. of the particle displacements
as obtained from many different configurations, and was followed by Foss & Brady
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Figure 4. Graph of Dyy(t, 0) defined in equation (4.1) for φ = 0.25 (dot-dashed line), φ = 0.35
(dashed line), φ = 0.45 (solid line), for N = 27 and Nc = 512.

(1999) in their computation via numerical simulations of the diffusion coefficient in
the presence of Brownian forces. More precisely, let us define

Dyy(t, τ) =
1

2

d

dt
〈ξ(t, τ)〉 , (4.1)

with 〈ξ(t, τ)〉 defined by (3.5). An analogous definition for Dzz(t, τ) can be obtained
by substituting y with z in the definition of 〈ξ(t, τ)〉 in (3.5).

In order to have diffusion in the sheared suspension, it is necessary that the mean-
square displacements in the y- and z-directions both grow linearly in time, in which
case the long time particle self-diffusion coefficients D̂yy in the y-direction and D̂zz in
the z-direction, are defined as the limit, respectively, of Dyy(t, τ) and Dzz(t, τ) when
t→∞, these limiting values being independent of τ.

Figure 4 shows a plot of Dyy(t, 0) for Nc = 512, N = 27, and φ = 0.25, 0.35, and
0.45, from which it is clear that Dyy(t, 0) does not reach a constant value for increasing
t but oscillates with a period equal to precisely one for a cubic box. The data shown in
figure 4 were obtained using an ensemble of initial particle configurations as generated
by a hard-sphere molecular-dynamics method, in which all the particles are placed in
the same cubic box but in different non-overlapping locations.

The presence of these oscillations prevents us from evaluating the limit of Dyy(t, 0),
and hence the diffusivity, except in an approximate way. In order to find the cause
of these oscillations, and thereby to devise a method for eliminating them, we next
consider the simpler case of evaluating the intensity of the velocity fluctuations.

4.1. Oscillations of the intensity of the velocity fluctuations

Consider the intensity of the velocity fluctuations in the y-direction defined as

〈v2(τ)〉 =
1

Nc

Nc∑
i=1

1

N

N∑
α=1

[
vαi (τ)

]2
, with 〈v(τ)〉 = 0, (4.2)
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Figure 5. Graph of (a) 〈v2(τ)〉 defined in equation (4.2), and (b) 〈w2(τ)〉 for φ = 0.25 (dot-dashed
line), φ = 0.35 (dashed line), φ = 0.45 (solid line), for N = 27 and Nc = 512.

where vαi (τ) is the y-component of the velocity of particle α at time τ starting from
an initial hard-sphere configuration i. A plot of 〈v2(τ)〉 for Nc = 512, N = 27, and
φ = 0.25, 0.35, and 0.45, is shown in figure 5(a), from which it is clearly visible that
〈v2(τ)〉 oscillates with exactly the same period as did Dyy(t, 0). As shown in figure 5(b),
however, such regular oscillations were not observed in the evolution of the intensity
of the z-component of the velocity fluctuations 〈w2(τ)〉.

To study more quantitatively this effect on the long-time behaviour, we considered
the case of the evolution of a single initial configuration (Nc = 1) sheared for a very
long time (τ∞ = 6554) and we evaluated the Fourier transform of 〈v2(τ)〉,

F〈vv〉(ν) =

∣∣∣∣∫ τ∞

0

dτ 〈v2(τ)〉 e2πiντ

∣∣∣∣ , (4.3)

shown in figure 6 as a function of the frequency ν. Two very sharp peaks are clearly
noticeable at ν = 0 and at ν = 1, and a smaller one at ν = 2. The peak at ν = 0 is
due to the constant part of the signal and is not related to the oscillations, but the
remaining peaks, in particular that at ν = 1, refer to the anomaly under discussion.
For an initially cubic shape, the simulations were repeated for a different number
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Figure 6. Plot of F〈vv〉(ν), the Fourier transform of 〈v2(τ)〉 defined in (4.3), for a cubic box with
N = 16, Nc = 1, φ = 0.45, and τ∞ = 6554.

Frequency of the Magnitude of
Shape of the box: highest peak the peak

L×H beyond ν = 0 beyond ν = 0

20× 10 1/2 2× 10−1

10× 10 1 4× 10−2

10× 15 3/2 7× 10−3

10× 20 2 2× 10−3

Table 1. Values and locations of the peaks of F〈vv〉(ν), the Fourier transform of 〈v2(τ)〉 defined
in (4.3), in a monolayer, where L and H are, respectively, the extension of the cell in the x- and
y-directions. The length of the box in the z-direction, Lz was always set equal to 10 particle radii
and the areal fraction was 0.50.

of particles and different sizes of the box but the locations of the peaks remained
unchanged. This procedure was then repeated for four different shapes of the initial
box. The results are reported in table 1 for a monolayer of particles with areal fraction
equal to 0.50, where the horizontal length and height of the boxes, denoted by L
and H respectively, is listed in the first column, the location of the highest peak (not
considering that at ν = 0) in the second, and the magnitude of that peak in the third.
Clearly there is a direct relation between the side–height ratio of the initial box and
the location of the maximum peak.

These regular oscillations were also present when we performed simulations of the
sheared suspension by neglecting the long-range interactions. This was accomplished
in two independent ways: by running simulations with a code based on the method
described by Ball & Melrose (1997), as well as by employing a variation of the
Stokesian dynamics code in which only lubrication forces were retained. In both
cases the frequency of the oscillations remained unchanged and their magnitude was
comparable with that obtained from simulations in which the complete hydrodynamic
interactions were retained.

It was also noticed that the regular oscillations slowly decrease in magnitude as
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t = 0 t = L/2H t = L/H

H

L

Figure 7. Shape of the unit cell and its images at times, t = 0, L/2H , L/H . As can be seen the
configuration has the highest symmetry in the y-direction at t = 0 and this symmetry is recovered
after a strain of L and at a frequency H/L.

the height of the cubic cell, hereby denoted by H , is increased. In order to check
this dependence more quantitatively, a simulation was performed with φ = 0.45 and
N = 64 giving a side length 4/3 times bigger than that of the cubic box with 27
particles at the same volume fraction. It was found that the intensity of the oscillations
relative to the mean value of v2 was reduced from 0.32 to about 0.24, the ratio being
4/3. By assuming an inverse relation between the magnitude of the oscillations and
H , we therefore conclude that to reduce the oscillations to values less than 5% of the
mean it would be necessary to increase the cell side to about 6.5 times that of the box
containing 27 particles. At φ = 0.45, this would then require a box with more than
7000 particles, clearly far in excess of the number of particles which can be handled
using currently available computer capabilities.

The regular oscillations in the intensity of the velocity fluctuations seem, therefore,
to be due to a finite-size effect which, apparently, could be eliminated, for any given
configuration, only by increasing the size of the box. As we shall presently show,
however, the same goal can be accomplished by starting the computations with an
ensemble of configurations that are randomly out of phase with each other.

4.2. Elimination of the regular oscillations

To understand the nature of the regular oscillations one has to consider the details of
the numerical simulations from which they arise. To ensure the correct representation
of long-range interaction with a finite number of particles, Brady et al. (1988) have
shown that it is necessary to confine the particles in a periodic lattice. At this
point, the only way to apply a shear in a dynamic way is by means of the Lees–
Edwards boundary conditions, see e.g. Allen & Tildesley (1987, p. 246), in which the
shape of the lattice changes and deforms in time until it reaches the original cubic
lattice shape (that is with exactly the same frequency as that indicated in table 1).
Consequently, a spurious periodicity is introduced into the hydrodynamic calculations
by the instantaneous shape of the lattice. This is illustrated in figure 7 where we show
the instantaneous shape of the unit cell and its images at times t = 0, L/2H,L/H .
As can be seen, the configuration has the highest symmetry in the y-direction at
t = 0 and this symmetry is recovered after a strain of L and at a frequency H/L. On
the other hand, the shape of the box in the z-direction is not altered, a fact which
accounts for the lack of any observed regular oscillations in 〈w2(τ)〉.

Other observations support the argument that the regular oscillations originate
from the periodic evolution of the cell shape. The first pertains to the fact that these
oscillations cannot be filtered out by averaging over the initial configurations even
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though the latter are unrelated to each other. This implies that all configurations
have not only the same frequency but the same phase as well. The second refers to
the fact that these oscillations are very persistent, and show no measurable decay in
their amplitude. Thirdly, the decrease of the amplitude of the regular oscillations with
increasing H shows that this phenomenon loses its importance when the periodic
boundary condition in y no longer plays a dominant role in shaping the evolution
of the particle configuration. Finally, as we shall presently show, our assumption
regarding the origin of the oscillations is also consistent with the fact that these can
be effectively eliminated by randomly averaging over the orientation of the initial
shape of the periodic lattice, which is equivalent to averaging over the initial time t0,
with t0 ranging from 0 to 1 for a cubic box.

Guided by the results plotted in figure 5 we therefore take it for granted that, when
τ� 1, 〈v2(τ)〉 can be represented by

〈v2(τ)〉 = A2 + B e2iπντ for τ� 1, (4.4)

where A and B are time independent and ν = 1 for a cubic box.
In order to eliminate the regular oscillations, it suffices then to introduce a random

phase in the time of each single configuration by starting each simulation from a
random negative time, so that equation (4.4) now becomes

〈v2(τ)〉 = A2 + B e2iπν(τ+η) , (4.5)

where η is a random number, ranging from 0 to 1 for a cubic box, independent of
the initial configurations and the average is taken only over those configurations for
which η lies between η and η + dη. Further averaging over η yields

〈〈v2(τ)〉〉 = A2 for τ� 1, (4.6)

which no longer contains the effects of the regular oscillations given that 〈e2iπνη〉 = 0.
This procedure is equivalent to changing the definition of the average from that of
(4.2) to

〈〈v2(τ)〉〉 =
1

Nc

Nc∑
i=1

1

N

N∑
α=1

[
vαi (τ+ ηi)

]2
, (4.7)

where ηi is a random number for each configuration uniformly distributed between 0
and 1 for a cubic box. As shown in figure 8, which depicts a plot of

〈〈v2(τ)〉〉 obtained
using the procedure of randomized phases just described, the large regular oscillations
have disappeared. Also, the remaining noise can be made as small as desired by
increasing the number of configurations. We wish to remark parenthetically that the
method which we have devised for the purpose of eliminating these regular oscillations
is by no means unique in that any number of filtering techniques could have been
employed for achieving the same goal. Our method has the great advantage, however,
that it can be applied simultaneously to the computation of all the physical quantities
of interest, such as the displacements, the velocities, and the velocity autocorrelation
functions. We also wish to point out that, if the regular oscillations seen in figures 4
and 5(a) were physical, e.g. due to the formation and destruction of clusters, rather
than spurious as we have assumed, it would not have been possible to remove them
just by shifting the origin of time in the initial hard-sphere configurations.

In what follows, we shall use the definitions of the averages similar to (4.7) and
proceed to describe the calculation of the different coefficients characterizing the
sheared suspension.
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Figure 8. Graph of 〈〈v2(τ)〉〉 as defined in equation (4.7), for φ = 0.25 (dot-dashed line), φ = 0.35
(dashed line), φ = 0.45 (solid line), for N = 16 and Nc = 512.

N Nc 1/H D̂yy D̃yy D̂zz D̃zz

16 512 0.1735 0.019± 0.003 0.019± 0.003 0.009± 0.001 0.008± 0.001
27 256 0.1457 0.027± 0.003 0.025± 0.006 0.012± 0.001 0.012± 0.001
54 32 0.1157 0.037± 0.012 0.038± 0.020 0.014± 0.006 0.012± 0.008
64 32 0.1093 0.038± 0.009 0.037± 0.025 0.015± 0.004 0.013± 0.008
∞ 0 0.041± 0.007 0.037± 0.013 0.016± 0.002 0.017± 0.003

Table 2. Values of the self-diffusivities evaluated for a volume fraction φ = 0.35. N is the number
of particles in the unit cubic cell, Nc is the number of configurations in the ensemble, and H is the
height of the cell. The values for 1/N = 0 were obtained by a linear extrapolation.

4.3. Numerical results for the self-diffusivities

We now return to the problem of establishing the diffusive behaviour of the sheared
suspension. To avoid the oscillations of figure 4, we evaluated Dyy(t, τ) from equation
(4.1) using, for one-half the average square displacement, the definition

〈〈ξ(t, τ)〉〉 =
1

Nc

Nc∑
i=1

1

2N

N∑
α=1

[
yαi (τ+ t+ ηi)− yαi (τ+ ηi)

]2
, (4.8)

in lieu of (3.5). An analogous definition holds for one-half the average square dis-
placement in the z-direction. A plot of Dyy(t, 0) as obtained using both definitions
(4.8) and (3.5), for 27 particles, with Nc = 512, φ = 0.15, is given in figure 9. In the
limit of large t, in the particular case of this figure for t > 8, Dyy(t, 0), as obtained
from (4.1) and (4.8), approaches a constant value so that, in contrast to using (3.5),
the self-diffusion coefficient D̂yy can now be determined. An analogous result applies

for D̂zz which, however, can be computed using either (3.5) or (4.8), since there are
no regular oscillations in the z-direction.

In table 2, we report the computed values of the self-diffusivity both in the y- and
z-directions, for a volume fraction φ = 0.35, as obtained with a different number
of particles in the unit cell, N = 16, 27, 54, and 64 with the reported error being
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Figure 9. Graph of Dyy(t, 0), as defined in (4.1), where the average displacements are defined as in
(3.5) (solid line) and in (4.8) (dashed line), N = 27, Nc = 512, φ = 0.15.

the r.m.s. obtained from the ensemble average. Clearly, the computed self-diffusion
coefficients depend on the number of particles used in the simulations. Guided by the
results of simulations recently reported by A. Sierou & J. F. Brady (2000, personal
communication), who used several hundred particles, we therefore expressed D̂yy and

D̂zz as linear functions of 1/N and, by means of a least-squares regression analysis,
extrapolated the values of these diffusivities to N →∞. Figure 10 shows a comparison
of the extrapolated values of (a) D̂yy and (b) D̂zz , with previous experimental and
numerical results. For volume fractions below 0.30 there is fair agreement with the
data in the literature but, for more concentrated suspensions, such a comparison
is less satisfactory. Consistent with the experimental data, however, our computed
values of D̂yy are significantly higher than those of D̂zz at the same volume fraction.
Nevertheless, several discrepancies are clearly evident in figure 10, which require
further study.

4.4. Numerical results for the autocorrelation function

We next consider the correlation between the transverse velocity of a certain particle
at two different times, also known as the velocity autocorrelation function. The
evaluation of this function for the velocity in the y-direction, using the random-phase
adjustment to avoid the regular oscillations, is done using

〈〈v(τ+ t)v(τ)〉〉 =
1

Nc

Nc∑
i=1

1

N

N∑
α=1

vαi (t+ τ+ ηi) v
α
i (τ+ ηi), (4.9)

where vαi (t) is the y-component of the velocity of particle α at time t in the configuration
i, and ηi is a random number between 0 and 1 for a cubic box; the autocorrelation
function in the z-direction has a similar definition with v replaced by w. A typical
graph of 〈〈v(τ + t)v(τ)〉〉, normalized by 〈〈v2(τ)〉〉, is shown in figure 11(a), for τ = 5,
Nc = 256, N = 27, φ = 0.35 and 0.45. We notice that the autocorrelation function
quickly drops to zero after about 0.8 strains, remains negative for about four strains,
and then becomes negligible shortly thereafter. A similar qualitative behaviour is
obtained at different volume fractions or with a different number of particles. The
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Figure 10. Comparison of (a) the yy-component and (b) the zz-component of the long-time
self-diffusion tensor extrapolated to 1/H = 0 with earlier experiment and computational results.

presence of a long tail in 〈〈v(τ + t)v(τ)〉〉 suggests that, even though the velocity
auto-correlation becomes very small (less than 20%) within one strain, a much longer
time is required, about four or five strains for the particular case of figure 11(a), for
the suspension to evolve into a completely independent state. The autocorrelation
function for the velocity in the z-direction, shown in figure 11(b), has a similar
qualitative behaviour.

Knowledge of the autocorrelation function also allows us to calculate the self-
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Figure 11. Autocorrelation functions for the velocity (a) y-component and (b) z-component,
normalized by their respective values at t = 0, for τ = 5, N = 27, and φ = 0.35 (dashed lines),
φ = 0.45 (solid lines).

diffusion coefficient in an independent way using the well-known expression (for
details, see Berne & Pecora 1976, p. 86)

〈〈ξ(t, τ)〉〉 ≡ 1

2

d

dt
〈〈[y(τ+ t)− y(τ)]2〉〉 =

∫ t

0

〈〈v(τ+ t′)v(τ)〉〉 dt′ . (4.10)

Therefore,

D̃yy =

∫ ∞
0

lim
τ→∞ 〈〈v(τ+ t)v(τ)〉〉 dt , (4.11)

and similarly for the coefficient D̃zz in the z-direction. Values for D̃yy and D̃zz for
φ = 0.35, as obtained from equation (4.11) with N = 16, 27, 54, and 64, are reported
in table 2, where the indicated error is the r.m.s. of the ensemble average. The values
of the diffusivities from the average square displacements and from the integral of the
autocorrelation function are also essentially equal to each other for the other volume
fractions considered, but are not printed here. We notice that, for the same number
of configurations, the error in the evaluation of D̂yy and D̂zz is consistently smaller

than that of D̃yy and D̃zz .
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Figure 12. A plot of 〈〈v(t + τ)v(τ)〉〉 (dot-dashed line), together with its integral (solid line), also
Dyy(t, τ) (dashed line), and 〈〈ξ(t, τ)〉〉 ≡ 1

2
〈〈[y(t + τ) − y(τ)]2〉〉 (dotted line), for Nc = 512, N = 27,

φ = 0.35, τ = 5.
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Figure 13. A plot of 〈〈w(t + τ)w(τ)〉〉 (dot-dashed line), together with its integral (solid line), also

Dzz(t, τ) (dashed line), and 1
2
〈〈[z(t+ τ)− z(τ)]2〉〉 (dotted line), for Nc = 512, N = 27, φ = 0.35,

τ = 5.

Shown in figure 12 is a comparison between
∫ t

0
〈〈v(τ+ t′)v(τ)〉〉dt′ (plotted as a solid

line) and Dyy(t), the dashed line from equations (4.1) and (4.8), which are seen to be
equal within numerical error. This same degree of agreement was also found in all the
other cases which were considered. An analogous comparison for the components in
the z-direction is also shown in figure 13, where the curves are seen to be very similar
to those of figure 12.

The form of 〈〈v(τ+t)v(τ)〉〉 and the relation (4.10) just verified allow us to understand
more fully the dependence of 〈〈ξ(t, τ)〉〉 on t (plotted as a dotted line in figures 12
and 13). For t→ 0, this quantity grows quadratically,

1
2
〈〈ξ(t, τ)〉〉 ' 〈〈v2(τ)〉〉 t2 as t→ 0, (4.12)
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N Nc 0.15 0.25 0.35 0.45

16 512 8.6 5.4 4.1 2.9
27 256 6.5 5.3 3.5 3.0
54 32 8.5 5.0 3.2 3.1
64 32 6.5 4.8 4.7 3.2

Table 3. Values of the correlation time Tc, defined by equation (4.13), for φ = 0.15, 0.25, 0.5, and
0.45, N is the number of particles in the unit cell, Nc the number of configurations in the ensemble.

as confirmed by the numerical results. Thus, at these time scales the motion is
not diffusive. This constitutes a very important difference between the suspension
considered here, in which Brownian motion is neglected, and a suspension at finite
Péclet numbers where the short-time diffusivities are independent of t and proportional
to the mobility matrix (see e.g. Brady 1994). Moreover, in our case, an apparently linear
regime is reached in the range 0.5 < t < 2 due to the fact that the autocorrelation
function changes sign at about t = 1 where its integral reaches a local extremum. This
led some earlier researchers, e.g. Foss & Brady (1999), to terminate their simulations
at t = 2 in the mistaken belief that they had reached the asymptote for the diffusion
coefficient. Finally, for t > 5 we have 〈〈v(τ+ t)v(τ)〉〉 ' 0, so that its integral, Dyy(t),
becomes constant and the final diffusive steady state is reached. More precisely, for
any large τ, e.g. τ > 5, let us define the correlation time as the smallest time Tc such
that

|〈〈v(τ+ t)v(τ)〉〉|
〈〈v2(τ)〉〉 6 0.05 for any t > Tc. (4.13)

This correlation time is an important time scale for the flow of the suspension, in
that it refers to the time interval which must be exceeded before the average particle
square displacement can be described with a diffusion equation. In table 3 we report
the correlation times found from our numerical simulations for different number of
particles in the unit cell and different values of the volume fraction φ. Although
the evaluation of the correlation time is evidently subject to large error, its order of
magnitude at various volume fractions is of some importance. As expected intuitively,
Tc decreases with increasing volume fractions and its value does not seem to depend
strongly on the number of particles used in the unit cell. Also, the fact that Tc is
significantly larger than unity, especially at lower particle volume fractions, raises
doubts regarding the accuracy of the diffusion coefficients reported by Breedveld et
al. (1998, 2000), and shown in figure 10, because, on account of the large scatter in
their data, their measured mean-square particle displacements are reliable only for
values of the strain below about 0.7 and 2, respectively, both of which are smaller
than Tc.

In the previous section we showed how the displacements, in the directions normal
to the flow, of the position of a tagged particle in a uniform sheared suspension have
a Gaussian distribution, whereas in this section we showed that, for times greater
than the correlation times reported in table 3, the average square displacements grow
linearly with t giving well-defined diffusion coefficients. These results were obtained
with simulations involving a relatively small number of particles but, using ensemble
averages. We wish to note that the main advantage of starting our simulations using
initial hard-sphere configurations is that the sequence in which the suspension flow
is computed for the different configurations is immaterial. This is very advantageous
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if a parallel machine or a cluster of machines is available. On the other hand, if
only a single processor computer is available and the time required for 〈〈v2(τ)〉〉 to
reach its equilibrium steady state for a simple shear flow is larger than the correlation
time, it may be preferable to obtain the different configurations of the ensemble by
dividing a single simulation performed over a long time into many small parts and
then proceeding as if these configurations were independent.

5. Evaluation of the gradient diffusivity
Up to this point we have only dealt with suspensions that are homogeneous on

a macroscale, and have determined some of the key parameters that result in the
presence of simple shear, e.g. the shear-induced tracer diffusivities along and normal
to the plane of shear, the corresponding velocity autocorrelations functions, the
correlation time beyond which the suspension loses its memory etc. Most practical
applications, however, involve suspensions in which the particle concentration profile
is non-uniform with the result that a shear-induced particle flux is created from regions
of high concentrations to low (Acrivos 1995). The key parameters here are the so-
called gradient diffusivities D‖ and D⊥ (Leighton & Acrivos 1987b), which appear in
the linear relation between the particle flux J and the local particle concentration
gradient in the two directions normal to the flow,

Jy = −D‖ ∂φ
∂y

and Jz = −D⊥ ∂φ
∂z
. (5.1)

The evaluation of these two coefficients will be the subject of the remaining part of
this paper.

5.1. Non-uniform suspension

In principle, this gradient diffusivity in one of the transverse directions, say y, could be
computed by artificially introducing into the suspension a finite force Fy , periodic in y
with period 2π/H , and then determining via simulations how an initially statistically
homogeneous suspension evolves under shear into a state in which the local particle
concentration is also periodic in y. It can be shown that the relaxation time for
this process equals H2/4π2D where D is the corresponding gradient diffusivity. The
difficulty with this approach is that the simulations must be performed on suspensions
which are statistically non-homogeneous. Also, since the value of D thereby obtained
depends on the strength of this artificial force, the computations would have to be
repeated for different values of this strength and the results extrapolated to zero.

In contrast, in the technique which we shall present below and which is a modi-
fication of that described by Marchioro et al. (2000, 2001), all the computations are
performed on a suspension which is statistically homogeneous. The essence of this
method, which has some common features with the familiar technique of determining
the diffusivity of Brownian particles from light scattering experiments (Rallison &
Hinch 1986), is to create a small artificial inhomogeneity in the suspension, not by
altering the particle trajectories in response to an applied force, but rather by chang-
ing the probability of the different configurations in a prescribed way according to
the instantaneous state of inhomogeneity. (An important difference between the two
techniques will be pointed out later on in this section.)

We begin by recalling that the local ensemble-average volume fraction of the
particles at location y, averaged over x and z, is given by (for a cubic cell of
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height H)

φ(y, t) =

Nc∑
i=1

P (i, t)
1

H2

N∑
α=1

4π

3
δ(y − yαi ), (5.2)

where P (i, t), to be specified more precisely later, is the probability of the configuration
labelled i (i = 1, . . . , Nc), 4π/3 is the volume of each sphere of unit radius, and δ is
the Dirac delta function. An important point which must be kept in mind is that the
specification of P (i, t) for any given ensemble of configurations is arbitrary and that
the specific expression chosen for P (i, t) will determine the properties of the system
and, according to the definition (5.2), the volume fraction profile φ(y, t) within the
suspension.

Specifically, let us consider a particular choice of P (i, t), namely P0(i, t), which gives
rise to a homogeneous suspension where, in this context, we say that the suspension
is homogeneous with respect to P in the y-direction if the value of φ(y, t) is the
same for each y. Now if the Nc initial configurations are sampled from a hard-sphere
distribution, then there is no reason to give a higher or lower probability to any of
these initial configurations, and hence, P0(i, 0) = 1/Nc. We also established in § 3,
however, that when the simple shear is applied to any of these initial configurations
in the absence of an external force, the particles will be displaced in the + or −
directions with equal probability (and similarly with respect to z). As a consequence,
the different configurations will maintain the same relative probability and the choice
P0(i, t) = 1/Nc for every t > 0 will give rise to a uniform distribution.

To obtain a non-uniform system it is therefore necessary to use a different definition
of P (i, t). Several choices are possible but a very convenient one (see e.g. Marchioro
et al. 2000) is to define a probability Pε(i, t), according to

Pε(i, t) = P0(i, t) [1 + ε σ(i, t)] , (5.3)

where

σ(i, t) =

N∑
α=1

sin k yαi (t) , (5.4)

ε is a small parameter which, as will be seen presently, cancels out of the analysis and
k = 2π/H is such that sin k y is periodic over the height of the box.

The volume fraction φ, defined in (5.2) with P replaced by Pε, can be expanded in
a Fourier series in the spatial coordinate to give

φ(y, t) = φ0 [1 + S(t) ε sin k y + R(t) ε cos k y] , (5.5)

where φ0 = 4πN/3V , with V ≡ H3 being the volume of the cubic cell, is the
homogeneous volume fraction while

S(t) =
2

N

Nc∑
i=1

P0(i, t) [σ(i, t)]2 , (5.6)

and

R(t) =
2

N

Nc∑
i=1

P0(i, t)

N∑
α=1

sin k yαi (t)

N∑
β=1

cos k yβi (t) . (5.7)

We shall presently show, however, that R(t) = 0 when the suspension described by
P0 is homogeneous and a sufficiently large number of configurations are used in the
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Figure 14. Two equally likely configurations in the homogeneous ensemble. Configuration B is
obtained from A by a mirror symmetry about the centreline.

ensemble. To this end consider a possible configuration in the homogeneous ensemble,
for example that labelled A in figure 14. In the ensemble another configuration, B in
our example, might be present which is obtained from A by mirror symmetry about
the centreline. Because of symmetry,

sin k yαA = − sin k yαB , cos k yαA = cos k yαB , (5.8)

for α = 1, . . . , N. But since the ensemble is homogeneous, configurations A and B will
have the same probability, i.e. P0(iA, t) = P0(iB, t), and therefore, from equation (5.7),
R(t) will vanish.

The ensemble average of the particle velocity in the y-direction is defined in a way
similar to equation (5.2):

v(y, t) =
1

φ(y)

Nc∑
i=1

Pε(i, t)

N∑
α=1

4π

3
δ(y − yαi ) vαi (t) , (5.9)

where vαi is the velocity of particle α in the y-direction in configuration i. It is however
more convenient to expand φ(y, t)v(y, t), rather than v(y, t), in a Fourier series giving

φ(y, t)v(y, t) = φ0

[
v0(t) + vs(t) ε sin k y + vc(t) ε cos k y

]
, (5.10)

where

v0(t) =

Nc∑
i=1

P0(i, t)
1

N

N∑
α=1

vαi (t), (5.11)

vs(t) =

Nc∑
i=1

P0(i, t)σ(i, t)
2

N

N∑
α=1

vαi (t) sin k yαi (t), (5.12)

vc(t) =

Nc∑
i=1

P0(i, t)σ(i, t)
2

N

N∑
α=1

vαi (t) cos k yαi (t). (5.13)

The parameter v0(t) is simply the average velocity of the particles in the y-direction
in the homogeneous suspension (i.e. when ε = 0) and therefore vanishes in a shear
flow. To show that vs also vanishes, consider a possible configuration of the ensemble,
for example configuration C of figure 15. Since the ensemble is homogeneous and
representative of the whole configuration space, there exists another configuration, D
in the example of figure 15, that can be obtained from C by a rotation of π radians.
As a consequence of the symmetry of the two configurations, for each α = 1, . . . , N
we have

sin k yαC = − sin k yαD and vαC = −vαD . (5.14)

The two configurations also have the same probability in the homogeneous distribu-
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Figure 15. Two configurations that have the same probability in the homogeneous ensemble.
Configuration D can be obtained from C by a rotation of 180◦. Notice how the velocity of the
particles in the vertical direction are opposite to each other in the two configurations.

tion and therefore vs = 0 on account of equation (5.12). Note that the same argument
does not lead to any conclusion regarding vc because

cos k yαC = cos k yαD . (5.15)

Next, we derive a relation between S(t) and vc(t) given by equations (5.6) and (5.13),
respectively, by taking the time derivative of S(t), denoted by Ṡ (t), thereby obtaining

Ṡ (t) =

Nc∑
i=1

P0(i, t) 2 σ(i, t)
2

N

N∑
α=1

d

dt
sin k yαi (t) = 2 k vc(t) . (5.16)

Note that in the same way one could obtain Ṙ = 2 k vs, showing that vs = 0 from
R = 0. Consequently, on making use of the above together with equations (5.5) and
(5.10), we find that

φ(y, t) = φ0 + φ0 S(t) ε sin k y, (5.17)

v(y, t) =
1

2 k
Ṡ (t) ε cos k y + O(ε2). (5.18)

5.2. Flux balance and numerical results

Before proceeding with the non-stationary case, let us consider the system at steady
state. After the suspension has been sheared for a long time, the concentration profile
becomes

φ∞(y) = φ0 + φ0 S∞ ε sin k y , (5.19)

where S∞ = limt→∞ S(t). To maintain this concentration profile which has a gradient
in the y-direction, it is necessary to have a time-independent flux of particles J∞, that
counterbalances the gradient diffusion flux thereby generated. Hence, by virtue of
equation (5.1), this flux must satisfy

J∞ = D‖(φ∞)
∂φ∞
∂y

= φ0 k D‖(φ0) S∞ ε cos k y + O(ε2) , (5.20)

which also defines D‖. In other words, the introduction of the artificial probability
Pε(i, t) given by (5.3) and (5.4) is equivalent to introducing a flux along y proportional
to cos k y that, at steady state, counterbalances the gradient diffusion flux due to
the non-uniform particle concentration which Pε(i, t) has created. Moreover, since
the expression for Pε(i, t) does not depend explicitly on t, we shall retain (5.20) as
representing this probability-induced flux for all t > 0.

In the general non-stationary case, the total flux of particles crossing each plane at
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Figure 16. Computed values of S(t) (dashed line) for Nc = 256, N = 27, k = 0.9956, and a volume
fraction φ = 0.35. The solid line, y = 0.041 + 0.42 e−0.181 t, is a curve fit of S(t) according to (5.24).

constant y is given by

Jt = φ v =
φ0

2 k
Ṡ (t) ε cos k y + O(ε2) . (5.21)

This flux is balanced by two terms: the shear-induced gradient flux given by

Jg ≡ −D‖(φ)
∂φ

∂y
= −φ0 k D‖(φ0) S(t) ε cos k y + O(ε2) , (5.22)

and the flux J∞ defined in equation (5.20) created by Pε(i, t). Particle conservation
requires that Jt = Jg + J∞, hence

1

2 k
Ṡ (t) = −D‖ k [S(t)− S∞] + O(ε) . (5.23)

Notice that the term ε cos k y has disappeared from equation (5.23) the solution of
which is

S(t) = S∞ + [S(0)− S∞] e−2 k2 D‖ t with k =
2π

H
. (5.24)

By fitting the numerical results of S(t) obtained from (5.6) to the form of equation
(5.24), it is possible to extract the coefficient D‖. Figure 16 shows the numerical values
of S(t) evaluated at a volume fraction φ = 0.35, with N = 27 particles, as well as the
curve fit according to equation (5.24).

Before accepting this curve fit, however, it is necessary to check that these results
do not depend on the particular choice of the initial distribution for the configura-
tions used in the calculations. A good parameter characterizing the structure of the
suspension at the initial time t = 0 is S(0) which equals the static structure factor
of the initial particle distribution at the lowest wavenumber (for more details, see
Berne & Pecora 1976, p. 225). Different independent initial ensembles were therefore
generated having different values of S(0), and S(t) was determined from simulations
which were performed starting from these initial ensembles. The results obtained for



Shear-induced particle diffusivities from numerical simulations 125

N Nc 1/H D‖ D⊥

16 512 0.1735 0.10± 0.05 0.08± 0.03
27 256 0.1457 0.13± 0.05 0.11± 0.02
54 128 0.1157 0.15± 0.08 0.17± 0.02
64 128 0.1093 0.18± 0.04 0.18± 0.02
∞ 0 0.20± 0.05 0.21± 0.02

Table 4. Values of the gradient diffusivities evaluated for a volume fraction of φ = 0.35, with N
the number of particles in the unit cubic cell, Nc the number of configurations in the ensemble,
and 1/H is the inverse of the height of the cell. The values for 1/N = 0 were obtained by linear
extrapolation.
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Figure 17. Values of D‖ (circles) and D⊥ (diamonds) extrapolated to 1/N = 0 as functions of the
volume fraction φ. The solid line is D1 as defined in equation (5.25) and the dashed line is D2 as
defined in equation (5.26).

the gradient diffusivity were found to be in agreement with each other within the
measured error, i.e. the error found in fitting S(t) using equation (5.24). As might have
been anticipated, ensembles with higher values of S(0) gave smaller errors in D‖. For
this reason ensembles with high S(0) values, usually between 0.5 and 1.0, were used
in subsequent simulations.

The gradient diffusivity in the direction normal to the plane of shear D⊥ can
be evaluated, using exactly the same method as for D‖, by substituting the spatial
coordinate z for y and the velocity component w for v. The results for both D‖ and
D⊥ are reported in table 4, for a volume fraction φ = 0.35, as obtained with a different
number of particles in each unit cell and a different number of configurations. Again,
as in the case of the tracer diffusivities, these diffusion coefficients are dependent on
the number of particles in the unit cell and therefore, as before, a linear regression in
1/N was used to extrapolate the results to the limiting case of an infinitely large cell,
which, incidentally, also corresponds to k → 0. In Figure 17 the gradient diffusion
coefficients D‖ (circles) and D⊥ (diamonds), extrapolated to 1/N = 0, are plotted as
functions of the volume fraction. Note that, as in the experimental results, the values
of two coefficients are close to each other.
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Since no previous numerical results exist to which our data can be compared, the
only possible comparison is with experimental findings, but no method currently exist
for measuring the gradient diffusion coefficient directly. By fitting particle migration
data to the solution of model equations, however, Leighton & Acrivos (1987b) were
able to extract values for the gradient diffusivity at constant stress which they then
fitted with the expression

D1 = 1
3
φ2(1 + 1

2
e8.8φ). (5.25)

An alternative expression for the gradient diffusivity was given by Phillips et al.
(1992),

D2 = 0.65φ2 1

η

dη

dφ
, (5.26)

where η is the effective relative viscosity of the suspension taken to be

η =

(
1− φ

0.68

)−1.82

. (5.27)

In figure 17, D1 given by (5.25), is plotted as a solid line and D2, as defined by equation
(5.26), as a dashed line. Clearly both are in fair agreement with the values for the
diffusion coefficient as obtained from our numerical simulations and extrapolated to
1/N = 0.

As mentioned earlier, our technique for computing the gradient diffusivity has some
points in common with the well-known method for determining the tracer as well as
the gradient diffusivity from light scattering experiments (Rallison & Hinch 1986).
Nevertheless, the two methods differ in at least one important respect. Specifically,
in the latter case, the diffusivity is determined via the dynamic structure factor which
measures the time autocorrelation function of the fluctuations in the particle number
density. On the other hand, the function S(t) of (5.6) refers to the evaluation of the
instantaneous static structure factor which, in turn, is related to the evolution of the
instantaneous mean-square fluctuations of the number density as the suspension is
being sheared. As a result, S(t) does not vanish as t→∞, in contrast to the dynamic
structure factor, and its asymptotic value S∞ reflects the statistics of the particle
configuration which is attained after the suspension has been sheared for large values
of the strain starting from an initial set of hard-sphere configurations.

6. Summary and concluding remarks
The flow of a monodisperse, neutrally buoyant, homogeneous suspension of non-

Brownian solid spheres in simple shear was simulated via Stokesian dynamics starting
from a large number of independent hard-sphere configurations and ensemble averag-
ing the results. We established that the particle displacements in the directions normal
to the flow have Gaussian distributions, the variances of which grow quadratically
for small times, hence implying the absence of short-time self-diffusion in contrast
to Brownian suspensions, and linearly with time but only for time scales exceeding
the correlation time which itself is quite large (shown in table 3). By extending the
computations to longer time intervals than had been done previously, we were thereby
able to compute the long-time self-diffusivities (shown in figure 10) for a suspension of
non-Brownian particles subjected to shear flow. Our procedure, which also permitted
us to evaluate the autocorrelation for the velocities in the directions normal to the
flow, has the great advantage of breaking up the computational effort of a single long
simulation into a number of more affordable short-lived independent simulations and
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φ D̂yy D̃yy D̂zz D̃zz D‖ D⊥

0.15 0.005± 0.002 0.003± 0.002 0.002± 0.0005 0.002± 0.001 0.07± 0.03 0.06± 0.01
0.25 0.017± 0.004 0.015± 0.0005 0.006± 0.001 0.004± 0.001 0.10± 0.03 0.08± 0.02
0.35 0.041± 0.007 0.037± 0.012 0.016± 0.002 0.017± 0.003 0.19± 0.05 0.21± 0.02
0.45 0.051± 0.007 0.056± 0.006 0.039± 0.005 0.036± 0.005 0.32± 0.08 0.60± 0.10

Table 5. Summary of the values of the self- and gradient diffusivities evaluated for different
volume fractions, obtained by linear extrapolation to 1/N = 0.

is especially advantageous in computations using a parallel machine or a cluster of
computers. We further confirmed that the integrals of these velocity autocorrelation
functions produce an alternative way of determining the self-diffusivities. We also
found that, upon reversal of the direction of shear, the particles trace back their
trajectory but only for a time that is shorter than the correlation time, after which
they continue their diffusive motion as if the flow reversal had never occurred.

Finally, a new method, motivated by the work of Marchioro et al. (2000, 2001), was
developed for computing the gradient diffusion coefficients directly from numerical
simulations. This method is based on artificially alterating the probability of an en-
semble of configurations flowing under shear so that, according to the new probability
density, defined in equation (5.3), the suspension becomes slightly inhomogeneous and
a flux of particles is thereby generated. The balance of the different contributions to
the particle flux allows the calculation of the gradient diffusivity. To the best of our
knowledge this is the first time that the shear-induced gradient diffusion has been
determined directly either experimentally or via numerical computations.

Although all the results referred to above were found to apply even when N, the
number of particles within the unit cell, was as low as 16, the numerical values of
the diffusion coefficients become significantly larger when N is increased (see tables
2 and 4), in contrast to the effective viscosity which can be computed accurately and
independently of N even if the latter is as small as 16 (see e.g. Marchioro et al. 2000).
Consequently, for each volume fraction φ we evaluated these diffusion coefficients for
a different number of particles in the unit cell and then extrapolated the results to
a cell of infinite extension and therefore containing an infinite number of particles
(the results of this extrapolation are shown in table 5 and in figures 10 and 17). But
since the errors associated with such extrapolations are, of course, unknown, it would
be highly desirable if simulations could be performed with N much larger than 64,
the maximum number of particles per unit cell used in this study. This could only
be accomplished, however, by employing more powerful computers or more efficient
numerical algorithms and techniques than those currently available.
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